报告题目:Gene Regulation Inference using High Throughput Sequencing Data
报告时间:2021年6月18日,星期五,上午8:30-11:30(北京时间)
腾讯会议:703 119 366 ,密码:0618
报告人: 刘丙强教授,山东大学
报告摘要:
Reconstruction and analysis of transcriptional regulatory networks is a key to understand the intrinsic mechanism of the life. Currently, numbers of challenging questions in this research area need to be answered such as how the TFs regulate genes, how the genes be organized in transcription, and so on. High throughput sequencing data provides unprecedented opportunities to overcome these difficulties. Meanwhile, it also brings new computational and modeling challenges in high-dimensional data mining and heterogeneous data integration. To infer gene expression regulation mechanisms, we developed a series of computational frameworks focusing on several important computational problems including regulatory motif finding, regulon prediction, transcriptional unit prediction etc., both on bacterial and human genomes. These studies provided fundamental knowledge to guide the reconstruction and analysis of transcriptional regulatory networks, improved our understanding of how gene expression is controlled by the underlying regulatory systems, and have promising potentials on the research of regulatory mechanisms underlying complex diseases.
报告人简介:
刘丙强,山东大学数学学院教授、博士生导师,系统与运筹学研究所所长,院长助理。2003年毕业于山东大学数学学院基础数学专业,获学士学位。2010年毕业于山东大学数学学院运筹学与控制论专业,获博士学位。其间于2007年1月至2010年1月赴美国乔治亚大学联合培养。毕业后留山东大学数学学院从事教学科研工作,2017年晋升教授。担任中国工业与应用数学学会数学生命科学专委会委员,中国运筹学会计算系统生物学分会理事,中国计算机学会生物信息学专委会委员,国际计算机学会(ACM)中国理事会生物学专业委员会(SIGBIO)委员,中国自动化学会智能健康与生物信息专委会委员。主要研究方向为利用图与组合优化的模型与理论针对基因表达调控中的系列计算问题进行算法设计与数据分析,包括转录因子结合位点计算预测、转录单元和调节子预测、调控网络构建与分析等,研究成果发表在Nucleic Acids Research、Trends in Genetics 、Briefings in Bioinformatics、Bioinformatics等高水平生物信息学杂志上。