学术动态
当前位置: 首页 > 学术动态 > 正文
中科院黄记祖博士学术报告通知
发布时间 : 2017-12-11     点击量:

报告题目:A Fast Algorithm Based on a k-th Degree Polynomial Approximation for the Caputo Fractional Derivative

时间与地点:12月14日上午9:00 - 10:00;理科楼112

报告人:黄记祖博士,中国科学院数学与系统科学研究院

 

摘要:

In the talk, we introduce a fast algorithm with almost optimum memory for the Caputo fractional derivative, which can be expressed as a convolution of u'(t) with the kernel (tn-s)-a. In the fast algorithm, the interval [0,tn-1] is split into several  nonuniform subintervals.  The number of the subintervals is in the order of logn at the n-th time step. The fractional kernel function is approximated by a polynomial function of K-th degree with a uniform absolute error on each subinterval. We save K+1 integrals on each subinterval, which can be written as a convolution of u'(t) with a polynomial base function. As compared with the direct method, the proposed fast algorithm reduces the storage requirement and computational cost from O(n) to O((K+1)logn) at the n-th time step. We prove that the convergence rate of the fast algorithm is the same as the direct method even a high order method is considered. The convergence rate and efficiency of the fast algorithm are illustrated via several numerical examples, including nonlinear test case with graded meshes.

 

报告人简介:

黄记祖, 男,1982 年8 月4 日出生于湖南省攸县,2012 年在中国科学院科学与工程计算研究所获博士学位(硕博连读),导师:曹礼群研究员。2012 至2014 年在中国科学院软件研究所从事博士后研究工作。2014 年至今,任中国科学院数学与系统科学研究院助理研究员。曾参与科技部973 课题《材料与结构一体化的热力耦合多尺度模型与算法》(批准号:2010CB832702, 2010.9-2014.9)。现主持基金委青年基金项目《基于格子Boltzmann 方程的多尺度模型与并行算法》(批准号:11501554)。独立与合作发表论文10 篇。主要研究领域为多尺度模型和并行算法的设计与相关软件的开发,涉及计算材料科学、计算流体力学和计算传热学等领域的建模和计算。

 

copyright© gg999策略手机白菜-138全讯白菜官方网站

邮编:710049     网址:www.qinminw.com

Baidu
sogou